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Abstract-This work concerns the spontaneous gas bubble nucleation after rapid decompression in organic 
solution initjally saturated with dissolved gas and the subsequent bubble growth to macroscopic size. The 
decompressiaon limit for gas bubble formation was obtained from the stability condition of the critical 
cluster of dissolved gas molecules. This work also clarifies how the critical cluster grows to the critical size 
bubble, the first object which is separated from liquid molecules by interface. Further growing of this 
critical size bubble by diffusion process was treated by an integral method for the concentration boundary 
layer thickness. The calculation values of the amount of decompression for the homogeneous gas bubble 
formation in organic solutions and the time required for the birth of macroscopic bubble size are in 

reasonable agreement with experimental results. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Spontaneous bubb’le formations occur after a gas- 
liquid solution initially saturated with dissolved gas 
molecules is rapidly decompressed. Such phenomenon 
is observed in many industrial examples such as “vac- 
uum” degassing of molten metals [l] and the manu- 
facture of foamed materials [2] and cellular polymers 
[3]. It is also known to be the major cause of caisson 
disease in which case the gas bubble nucleation occurs 
within blood vessels and tissues due to excessive rate 
of decompression [4]. The subject of bubble 
nucleation, or the ensuing rate of gas evolution from 
the liquid thus deserves a considerable interest in a 
broad range of science and technology. 

Hemmingsen [S, 61 carried out an extensive exper- 
imental study on gas nucleation in various gas-water 
solutions caused by rapid decompression and 
observed that the amount of decompression for bub- 
ble formation in water solution varies with solute gas 
species. Kaddah [l] studied the problem of CO degas- 
sing in molten iron at 1600°C and found that CO 
bubble formation depends crucially on the oxygen 
activity in the solution. Experiments on gas bubble 
formation in elastomer were conducted by Gent [2]. 
Also experimental study on the nitrogen bubble 
nucleation in various organic solutions was performed 
by Hong [7]. 

Theoretical considerations on bubble nucleation by 
dissolved gas in liquids are rather limited as compared 
with the case of bubble nucleation by vapor molecules 

(boiling phenomena) [8]. A gas bubble nucleation 
model based on molecular interactions in gas-liquid 
solutions was proposed by Kwak and Panton [9]. In 
their model it is assumed that the surface energy 
needed for bubble formation is equal to the trans- 
lational motion of gas molecules which is lost during 
the dissolution process [lo]. The model also postulates 
the concept of the critical cluster which is embedded 
in liquid molecules ; once the cluster reaches the criti- 
cal size it grows further by kinetics without any hin- 
drance. On the other hand, macroscopic growing of 
gas bubble without any specification of the initial size 
was studied by many researchers, such as Striven [ 111, 
Epstein and Plesset [ 121, and Rosner and Epstein [ 131. 
Recently, Arefmanesh et al. [14] developed an accu- 
rate numerical technique based on potential theory 
to study diffusion-induced bubble growth in viscous 
liquids. However, no work was attempted to grow the 
critical size bubble forms from the cluster and this 
bubble grows to a macroscopic size bubble. 

Present works bridge the gap between bubble 
nucleation theory and the available mathematical 
treatment on the diffusion controlled bubble growth, 
thereby the birth and subsequent bubble growth of a 
gas bubble immediately after decompression can both 
be accounted for. For this purpose, the gas bubble 
nucleation model by Kwak and Panton [9] is adjusted 
to the case of organic solutions by suitable molecular 
volume transformation [15]. The resulting size of the 
critical cluster obtained by the stability condition of 
the cluster provides the amount of decompression for 
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NOMENCLATURE 

A” surface area of n-mer cluster Tf melting temperature of liquid 

: 
solute concentration V radial velocity in liquid 
gas diffusion coefficient in solution P average speed of molecule in 

4 rate of molecules striking on the liquid 
surface of n-mer cluster % molecular volume of dissolved gas 

fL lost degree of freedom of dissolved gas UN specific volume of liquid 
molecules Z, Zeldovich nonequilibrium factor. 

F, free energy need to form n-mer cluster 
Jfl nucleation rate of n-mer cluster per Greek symbols 

unit volume B, accommodation coefficient 
k Boltzmann constant I- Gibbs absorption at the interface 
Ku Henry constant 6 concentration boundary layer 

% mass of dissolved gas molecule thickness 
. I, m mass flux AH,,, enthalpy of evaporation 

n number of molecules in a cluster or in AHf enthalpy of fusion 
a bubble P density of solution 

N, number of dissolved gas molecules per PP gas density inside bubble 
unit volume rJ interfacial tension 

4 number density of solution fJ0 interfacial tension with infinite 
p, initial equilibrium pressure with gas curvature 

p, pressure inside bubble OLJ Lennard-Jones parameter. 
p, concentration profile 
PC0 ambient pressure Subscripts 
r distance from bubble center C critical size cluster 
r, radius of n-mer cluster 0 initial condition 
R radius of bubble W wall 

4 gas constant them chemical equilibrium 
Ro initial bubble radius co property evaluation far from the 
T liquid temperature bubble center. 

bubble nucleation. Also, it is assumed that kinetic 
growth continues until the number of molecules inside 
the cluster is enough to become the critical size bubble, 
which is the very first object separated from the liquid 
molecules by the interface. The growth of this bubble 
is assumed to be due to concentration defect through 
the interface by the diffusion process. The con- 
centration boundary layer thickness as a means of the 
driving force for the diffusion process is calculated by 
the integral method developed by Rosner and Epstein 
[13] with some modification. 

The calculation values of the amount of decom- 
pression for the homogeneous gas bubble formation 
in organic solutions and the time required for the 
birth of macroscopic size bubble in solutions are in 
reasonable agreement with experimental results. 

ters may be imagined. The change in free energy of 
the cluster molecules plus the surface energy as pos- 
tulated is the free energy required to form an n-mer 
cluster [9]. This is 

F” = -(Pi-P,)nv,+$kTn’/“. (1) 

The “lost degree-of-freedom”, fL, during the dis- 
solution process represents the solvent-solute inter- 
action effect, which is given by 

fLi3 = <Iv, (2) 

where < is the molecular volume which restrains all 
the translational motion of the gas molecule. The con- 
dition for a minimum with respect to n in the free 

GAS BUBBLE NUCLEATION 
energy of formation is found from eqn (1) to be 

Consider a liquid-gas solution saturated with gas (pi-p,)n113 =+F. (3) 
pressure Pi at temperature T. As a result of a pressure g 

reduction, an ambient pressure, P, the dissolved gases With the following transformed molecular volume of 
become supersaturated. In this metastable state, the dissolved gas and the corresponding number of 
aggregation of the dissolved gas molecules into clus- molecules in the cluster [ 151 such as 
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I& = (fL/3)3’%; (4-l) 

12 = (3/&)3’%’ (4-2) 

the above stability condition for the cluster becomes 
a standard form [9] It is 

(Pi -P&l”‘3 = T. 

The corresponding free energy for the formation of 
the n,-mer cluster may be obtained by replacing n’ as 
% 

F 1 
& - 2n,“3. (5) 

The growth of a cluster in the supersaturated solu- 
tion depends on kinetic events within the liquid. At 
present, the kinetic theory of the dissolved gas mol- 
ecules in solution is not yet clearly understood. 
However, assuming that the mean velocity of the dis- 
solved gas molecules and the number of activated 
gas molecules per unit volume in solution depend on 
solution properties, one may get the nucleation rate 
of the n,-mer cluster by dissolved gases [ 161. 

.I., = Z,,D,N,exp(-~n,2’3). (6) 

Here D, is the rate of molecules strike on the surface 
area of the cluster and 2, is the Zeldovich non- 
equilibrium factor such as 

ZfE = [-&(gJ C7) 

In eqn (8), Pis the average speed of the gas molecules 
within the solution, gg is the number of activated gas 
molecules per unit volume and A, is the n-mer cluster 
surface area given as A, = 4nrz = 4nrin213. The aver- 
age speed of dissolved gas molecules and the activated 
gas molecules per unit volume may be estimated as 
v71 

P= ($$“‘exp[-$I (9) 

(10) 

The parameters in the exponential terms are solu- 
tion properties ; AH,,, and AH, are the enthalpies for 
the evaporation and the freezing of the solution, 
respectively, and Tf is the melting temperature of the 
solution. With the expression for the minimum free 
energy of the clustering process given as eqn (5) and 
using eqns (7)-(lo), the nucleation rate, J,,, for the 
formation of the critrcai cluster is obtained. It is 

From eqn (6)‘, one may estimate the number of 
molecules of the critical cluster by substituting a suit- 
able value for J,=. It is assumed that J,, = IO6 nuclei 
cme3 corresponds to the massive bubble formation, 
while J,, = 1 corresponds to the threshold of bubble 
formation. Given the value of II, the amount of decom- 
pression is calculated from eqn (3). In this calculation, 
the partial molar volume of gas in organic solutions, 
which is needed for obtaining the effective molecular 
volume of dissolved gas was estimated using the cor- 
relation of Lyckman et al. [ 181. Also, the dissolved gas 
molecular volume which restrains all the translational 
motion of the gas molecule was estimated using the 
Lennard-Jones parameter cLJ [ 191 in the relation, 

;-=5!53 
g 6 LJ. (11) 

The effective volume that a single molecule occupies 
in water solution is a well defined physical quantity 
[20]. However, one cannot easily estimate the molec- 
ular volume of dissolved gases in large molecule solu- 
tions such as organic or polymeric ones [3], which in 
turn provides less accurate decompression amount for 
bubble formation. Another mechanism, in addition to 
the solute-solvent interactions, should be included to 
encounter the bubble formation in a melt system with 
high surface tension and low vapor pressure [21]. 

A MODEL OF TRANSITION FROM THE CRITICAL 
CLUSTER TO THE CRITICAL SIZE BUBBLE 

The concept of the critical cluster postulated by 
the Kwak-Panton bubble nucleation model has the 
following physical implication. The clustering process 
is the first step in forming a gas bubble within a liquid 
after rapid decompression, in which numerous dis- 
solved gas molecules group together to form a critical 
cluster. It is further assumed that once the critical 
cluster, corresponding to given conditions, is formed, 
its growing to a macroscopic gas bubble is guaranteed. 
Therefore, it can be said that the critical cluster quan- 
titatively defined by the bubble nucleation model [9] 
serve as “seeds” for the subsequent formation of the 
critical size bubble, which is the starting point of 
classical nucleation theory [22]. In other words, no 
additional energy is needed for the formation of the 
critical size bubble from the critical cluster. One may 
imagine that the cluster molecules closely packed with 
surrounding liquid molecules will behave quite differ- 
ently from those constituting a gas bubble, which has 
a clear interface [9]. 

First, we consider a gas bubble composed of n mol- 
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ecules of ideal gas, which is in mechanical equilibrium 
with the surrounding liquid. Then the following 
relations can be shown to hold for an arbitrary bubble 
radius R. 

where 

P&R3 = nkT 

Pp-P, =; 

(14) 

Eqn (14) is the expression for the surface tension 
correction depending on the radius of curvature [23] 
in which I is the Gibbs absorption at the interface 
and rr,, is the measured surface tension value at tem- 
perature T. Note that more surface tension is applied 
to the smaller size bubble, which is different from a 
droplet system. 

If such a bubble exists in a supersaturated liquid- 
gas solution, the bubble will grow by means of molec- 
ular diffusion. The diffusion process can be described 
by the Fick’s law, where the mass flux into the bubble 
is depending on the concentration gradient near the 
bubble boundary. The concentration gradient is, in 
turn, depending on the variation of the concentration 
at the gas-liquid interface. In the present work, it is 
assumed that the dissolved gas weight fraction at the 
bubble wall is related to the pressure inside the bubble 
according to Henry’s law such that 

(15) 

If the initial pressure before decompression is Pi, the 
solute supersaturation concentration, c, can be writ- 
ten as 

ccc 
m,N, f’, =-- 

P KH’ 

One notes that in order for the diffusion process to 
take place toward the bubble growth, c, < c, must 
hold and, hence, Pp < P, from eqns (15) and (16). 
Therefore, any bubble formed from the critical cluster 
must satisfy P, = P,. We tentatively assume the con- 
dition, c, = c, as a definition of the chemical equi- 
librium of the system. Then, by setting P, = Pi, the 
number of molecules forming the bubble in mech- 
anical and chemical equilibrium can be readily com- 
puted from eqns (12) and (13). The resulting value of 
n them, the number ofmolecules in the bubble which is in 
the chemical and mechanical equilibrium conditions, 
turns out to be much higher than that in the critical 
cluster, n,. This means that the pressure of the bubble 
having the same number of molecules as the critical 
cluster is much higher than that of the bubble cor- 
responding to the chemical and mechanical equi- 
librium conditions, the critical size bubble. It is obvi- 
ous that such a bubble will shrink to disappear as a 

result of counter diffusion, since c, > c,. Thus, no 
bubble which has a smaller number of molecules than 
n,,_ can survive as a bubble. Further, this kind of 
bubble cannot overcome the interfacial tension, as can 
be seen from eqns (12) and (13). Therefore, the only 
plausible physical reasoning will be to assume that the 
critical cluster continues to grow by molecular kinetics 
until the transition from the cluster to the critical size 
bubble finally takes place as the number of molecules 
forming the cluster passes that required for the critical 
size bubble [24]. Such reasoning is always possible 
in view of the fact that the clusters are subject to 
continuous molecular collisions and that different 
sizes of cluster are considered as different species of 
molecules [25]. 

The kinetic controlled growth of the critical cluster 
resulting from molecular collisions can be estimated 
from the previous nucleation kinetics, i.e. the rate of 
molecular collision on the n-mer cluster is given by 
eqn (8). 

dn -- 
z = D, = &VNgrgnsi3. (17) 

Separating the variables and integrating over arbitrary 
n and t gives approximately 

n them = [3&7~I?Y~r~t]~. (18) 

With known values of rzchem, the time lag needed to 
reach the cluster with nchem molecules can be directly 
computed from eqn (18). The results of the calculation 
are typically in ms range which can be safely neglected 
for the characteristic time of macroscopic bubble 
growth. Practically, the numerical calculation for 
diffusional growth was started with the number mol- 
ecules inside the bubble, nchem + 10. 

MACROSCOPIC GROWING OF A BUBBLE 

Basic analysis for diffusion controlled bubble growth 
Once the transition from a cluster to a gas bubble 

takes place, the subsequent diffusion controlled bub- 
ble growth can be analyzed by available mathematical 
treatment. Theoretically, the bubble which is in mech- 
anical and chemical equilibrium will not grow. 
However, a small number of molecules added by 
molecular collisions to the critical size bubble are 
enough to trigger the bubble to grow by a diffusion 
process. This is why we start the diffusional growth 
with n them + 10. The present analysis employs the fol- 
lowing assumptions for simplification : 

(i) the bubble is solely composed of dissolved gas 
molecules and the gas inside behaves as an ideal gas ; 

(ii) the bubble remains spherical at all times and 
any translational motions caused by buoyancy effects 
within the surrounding liquid are neglected; 

(iii) the pressure inside the bubble is always in 
mechanical equilibrium with that of the surrounding 
liquid by the interfacial tension. Therefore, the instan- 
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GAS 

Fig. 1. Physio-chemical model of spherical bubble growth in 
a supersaturated liquid configuration. 

taneous pressure differences by inertial and viscous 
effects are neglected ; 

(iv) the temperature of the system and property 
values remain constant during the entire process. 

Figure 1 gives the configuration of the present 
model for an arbitrary gas bubble within a gas-liquid 
solution. The mass balance across the gas-liquid inter- 
face provides the following relation : 

(19) 

where r+r” is the interfacial mass flux and the negative 
sign is due to the choice of present coordinate system. 
In view of assumptions (i) and (iii) and from eqns (12) 
and (13), the time dependent gas density p,(t) can 
be shown to be related to the gas pressure P,(t) as 
follows : 

then eqn (19) can be rewritten for ti” as 

-riz” = 
2% 2R-&I-vN dR 

Pm + R,Tj(R_2rUN)2 dt . I 
(21) 

The Fick’s law relates the mass transfer rate to the 
concentration gradient near the bubble boundary such 
that 

Dp ac -~ - 
-ti”- i-c, ar r=R 0 

(22) 

where c is the dissolved gas weight fraction as defined 
in eqn (15). The governing conservation for the solute 
concentration in the spherical coordinate system can 
be written as 

r 2 R(t). (23) 

The concentration satisfies the following initial and 
boundary conditions : 

c(r,t=O)=c(r=w,t)=c,. (24) 

With these conditions given in eqn (24), Epstein and 
Plesset [12] solved the mass conservation equation, 
eqn (23), without radial convection term, which yields 
an analytical solution. 

For an incompressible fluid, the velocity in fluid 
v(r, t) is related to v(R) on the bubble boundary 
through the continuity such that 

vr2 = v(R)R2 ; r > R(t). (25) 

Across the interface at r = R(t), the overall mass con- 
servation also gives 

ti” = p[v(R) - 61 (26) 

where d is the instantaneous radial velocity of the 
bubble wall caused by the inertial effects. However, 
the radial velocity contributed from the momentum 
equation is neglected in view of assumption (iii). Only 
the convection due to diffusional growth is considered 
in this analysis. 

The basic objective of the present analysis is to find 
the radius-time history of bubble growth cor- 
responding to the time dependent concentration on 
the bubble wall, c,(t), which satisfies the above con- 
servation equation and initial and boundary 
conditions. 

Reformulation of the problem using an integral method 
The integral method, which can be classified as one 

member of weighted residual methods, is particularly 
well suited to the present problem where the depen- 
dent variable c on the bubble wall is time-dependent. 
The present analysis is patterned after the work by 
Rosner and Epstein [ 131 with some modification. The 
underlying idea in applying the method is to assume 
a suitable functional form for the radius dependence 
of the concentration field which includes an unde- 
termined function of time. For the present problem, 
the undetermined function is just the solute con- 
centration boundary layer thickness 6. This arbitrary 
function is then introduced into the governing solute 
conservation equation with a reasonable assumption 
for the concentration profile. This boundary layer 
thickness, which represents the degree of con- 
centration defect at the bubble interface, is a crucial 
factor for diffusion process. Introducing suitable 
interfacial kinetics [ 131, the concentration boundary 
layer thickness was eliminated to obtain the time rate 
change of bubble radius. In this study, however, the 
boundary layer thickness was calculated directly by 
solving the cubic equation for 6 obtained from the 
solute conservation equation with a polynomial 
profile. This method turned out to be very successful 
in studying the heat transfer for single bubble motion 
in ultrasonic field [26, 271. Also note that such poly- 
nomial profiles turn out to be reasonable approxi- 
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mations for the initial stage of bubble growth [14] as 
well as for the later stage of diffusional growth as can 
be confirmed in this study. 

The governing conservation equation can be written 
with the aid of eqns (25) and (26) as follows : 

a 
r2 -(cm at 

_c) = - d+F 
( > 

R’g-(cm-c) 

+DE[r’f$c_-c)]. (27) 

Integrating from r = R to r = R+6 and using the 
boundary conditions, eqn (27) reduces to 

d 

-s 

Rf6 

dt R 
r2 (cm -c)dr=(l-c,)% (28) 

In deriving the above equation, the terms related to 
the bubble wall motion due to inertia effect are can- 
celed out. Since ps is related to P, through the ideal 
gas law and R is solely time dependent, eqn (28) can 
be integrated with respect to t such that 

s R+S c,-c 
r2 pdr = 1 -cm P# -~g,oR; 

(29) 
R cc.2 -cw c’w-cc, 3P 

where subscript “0” denotes the initial condition. 
Since c, is solute concentration at bubble wall. Rosner 
and Epstein [ 131 consider the following profile for the 
normalized solute concentration : 

cm-c Pr(5) ifR<r<R+6 
p= 
c,-cc, 0 if r 2 R+6 

(30) 

where 

r-R 
5=, 

and the concentration profile, Pr(c), is given by 

P,(5) =(1-oz. (31) 
This choice of the solute concentration profile satisfies 
that 

P,(O) = 1 and P,(l) = 0 

and also that 

(32) 

Then it can be shown that eqn (29) becomes 

20, 
Pmf R,T(R-a) 

200 
R, T(R, - a) )I 

Ri x 
where 

pR3 

(33) 

a = 2rvN. 

A different concentration profile may lead to a quad- 
ratic equation for 6 [28], which is readily solvable. 
However, this concentration profile yields an integral 
equation for the bubble radius R(t), which needs an 
assumed value of R(t) and requires repeated iteration 
until a satisfactory convergence for solving it. With 
the above choice of profile, the mass flux given by eqn 
(22) can be written as 

=_p (34) 

The mass transfer rate is also given by eqn (21). Then 
eliminate ti” from eqns (21) and (34) to obtain 

dR 
-= 
dt 2a,,(2R-3a) 6 ’ 

I( > 

(35) 

3R,T(R-a)’ z 

With c,(t) related to R(t) through eqns (15) and (20), 
eqns (33) and (35) constitute a system of ordinary 
differential equations for R(t). Due to the complex 
algebraic terms on the left-hand side of eqn (33), this 
system cannot be readily treated analytically. One may 
note that Rosner and Epstein [ 131 made a thin bound- 
ary layer assumption such that 6/R CC 1, whereby only 
the first-order term on the LHS of eqn (33) was 
retained. With this assumption, eqn (35) becomes a 
separable equation for bubble radius, R w.r.t. the 
solute concentration terms. However, as will be dis- 
cussed in a later section, such assumption is applicable 
only for a relatively large size bubble. Eqn (35) rep- 
resents the bubble growth due to the concentration 
defect near the bubble wall as is assumed. However, 
in general, the bubble wall motion is determined by 
the inertia force [29]. 

The solution of eqns (33) and (35) is then 
approached by introducing suitable nondimensional 
variables such as 

E = R/R0 

A = a/R, 

x = t/t, 

(3% 

(36b) 

(36~) 

200 2a0 =- 
’ = pmRoR,T R,P, (3fjd) 

where 

F = cm/c,,, WeI 

and 

c,,, 
mph’, P, =-- 

P 41’ 
W%) 
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Using these nondimensional variables, eqns (33) and 
(35) can be rewritten as 

and 

F-1-Z 
E-A 

1 . ! 1 1+~(2e-33A) (35)’ 

3 (E-A)~ 

A numerical calculation procedure for solving the 
above equations is as follows. First, for a given time 
step, the boundary layer thickness ratio, 6/R, is cal- 
culated from eqn (33)’ using the Newton’s method. 
Next, the resulting value of 6/R at a given radius of R 
is introduced into eqn (35)’ and then R(t) for the next 
time step is calculated using the fourth-order Runge- 
Kutta numerical integration scheme. The above pro- 
cedure is repeated np to the desired time step. 

RESULT’S AND DISCUSSIONS 

Table 1 gives the calculated results for nitrogen 
bubble formation in various organic solutions and 
comparisons with experimental data by Hong [7]. In 
addition, calculation values by the classical nucleation 

theory are listed. As shown in this table, the decom- 
pression values calculated are in reasonable agreement 
with experimental results, while the classical theory 
overestimates the events in general. Experimental 
results showed that the surface tension dependence on 
the bubble formation is not conclusive, for example, 
the decompression value for nitrogen bubble for- 
mation in benzene is less than that in ethanol. Com- 
paring these calculated values with the experimental 
results, the prediction in benzene is too high, while 
those in chloroform and hexane are too low. The main 
difficulty in predicting the decompression limit for 
gas bubble formation in organic solutions is that we 
cannot estimate the molecular volume occupied by 
dissolved gas molecules properly at present. Also note 
that the decompression amount obtained by Hong 
[7] may be low; for the threshold nitrogen bubble 
formation in water, the decompression value obtained 
by Hong (120 atm) is less than that by Hemmingsen 
(160 atm). 

Two cases of organic solutions : benzene and carbon 
tetrachloride are considered for the present example 
calculation of macroscopic bubble growth. The dis- 
solved gas is nitrogen for both cases. The calculation 
result of radius-time history of gas bubble from the 
critical size is shown in Figs 2 and 3. The initial radius, 
&,, and the corresponding number of molecules inside 
the critical size bubble, nchem, are also given in the 
figures. The two graphs show a similar pattern of 
growing: i.e. a slow development at the beginning 
followed by a rapid growth leading to the typical 
diffusional one (R’ a t) which has also been verified 
by an experiment on the bubble growth during rapid 
decompression in liquid [28]. It should be noted that 
the bubble growth is dominated by the well known 
parabolic growth because the initial stage is rather 
short as can be seen in this figure. The trend of rela- 
tively large variations during the initial stage of 
growth is mainly due to the behavior of the boundary 
layer thickness. Table 2 gives a list of calculation 

Table 1. The decompression limit of nitrogen gas in various organic solutions at 20°C (the surface tension data 
were obtained from CRC Handbook of Chemistry and Physics, CRC Press Inc., 1979) 

Liquid (surface 
tension at 20°C ; 
dyne cm-‘) 

Present theory 

J, = 1 (atm) J,, = lo6 (atm) 

Classical 
theory 

J = 1 (atm) 

Experiment [7] (atm) 
(massive bubble 

formation) 

Methanol 86 108 250 90 
(22.61) 
Ethanol 80 105 252 80 
(22.75) 
Chloroform 45 57 330 70 
(27.14) 
Carbon tetrachloride 30 48 326 53 
(26.65) 
Benzene 49 59 361 35 
(28.85) 
n-Hexane 31 41 184 56 
(18.43) 
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Fig. 2. A comparison between calculation results by present 
model and P&set’s solution for bubble growth in benzene- 

nitrogen solution ; R, = 0.171 x 10e5 cm, nChcm = 18 268. 
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Fig. 3. A comparison between calculation results by present 
model and Plesset’s solution for bubble growth in carbon 
tetrachloride-nitrogen solution ; & = 0.106 x 10e5 cm, 

n chcm = 6535. 
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Fig. 4. Boundary layer thickness 6 as function of time t in 
benzene-nitrogen solution. 

results for the case of benzene-nitrogen system, in 
which the behavior of boundary layer thickness is 
given in detail. The value of 6/R is very large at the 
initial stage of bubble growing : however, the value is 
nearly constant for later stages as expected. 

For comparisons, the calculation results by the 
classical work of Epstein and Plesset [12] are also 
shown in Figs 2 and 3. The analytical result based 
on steady-state concentration defect neglecting the 
convection term leads to the constant value of relative 
boundary layer thickness asymptotically. As shown in 
these figures, Epstein and Plesset’s work overestimates 
the initial bubble growth and the trend is reversed such 
that the subsequent growing is greatly underestimated 
compared to the present work. However, a similar 
overall-trend has been obtained from both works. The 
corresponding variations of the boundary layer thick- 
ness shown in Fig. 4 well describes the discrepancy 
between the two analyses. As expected, an exact 
reverse trend is observed, which clarifies the import- 
ance of the boundary layer thickness as the major 

Table 2. Bubble radius and boundary layer thickness as function of time ; a 
list of calculation for benzene-nitrogen solution 

Time Bubble radius Boundary layer 
(s) (cm) thickness (cm) 6/R 

0.195 X 1OV 0.171 x 1om5 0.788 x 1O-5 4.610 
0.135 X 1om4 0.173 x 1o-5 0.786 x lo-’ 4.546 
0.212 X lo-4 0.272 x lo-’ 0.975 x 1OV 3.583 
0.322 x lO-4 0.210 x lo-4 0.204 x 1O-4 0.790 
0.438 x 1O-4 0.698 x 10m4 0.364 x 1O-4 0.521 
0.734 X 1om4 0.135 x 1o-3 0.566 x 10m4 0.419 
0.110x lo-’ 0.209 x lo-’ 0.794 x 1om4 0.380 
0.250 x 10m3 0.400 x 1o-3 0.138 x 10m3 0.345 
0.845 x 10m3 0.853 x lo-’ 0.276 x 10-j 0.324 
0.164 x lo-’ 0.124 x lo-* 0.401 x 10-S 0.323 
0.744 x 1o-2 0.276 x 1O-2 0.861 x lo-* 0.312 
0.280 x 10-l 0.545 x lo-* 0.168 x 1o-2 0.309 
0.217 0.154 x 10-l 0.473 x lo-* 0.307 
0.434 0.207 x 10-l 0.666 x 1o-2 0.307 
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. -. -. . Epstein & Piesset’s result 

4 :s 
2 

:s 
100 
1 o-’ 
1 o-2 
1 o-3 
104 
1 o-5 
IO-6 
1 o-7 
10-8 
IO” 

;;I:: 

1 - J,,= lo6 

Fig. 5. A comparison between calculation results by present Time (s) 

model and Plesset’s :rolution for bubble growth in water- Fig. 6. The volume occupied by gas bubble per unit volume 
nitrogen solution; R, = 0.781 x 10m6 cm, nchcm = 9521. depending on the nucleation rate in benzene-nitrogen solu- 

tion. 

controlling parameter in the diffusion process. The 
thin boundary layer assumption (6/R << 1) employed 
in the previous analysis by Rosner and Epstein [ 131 is 
not valid during the initial stage of bubble growing, 
whereas it becomes a reasonable assumption for 
macroscopic bubb1.e growing. Further, macroscopic 
bubble growth due to mass diffusion may require more 
accurate treatment of the conservation equation for 
concentration and experimental verification, 

especially for the bubbles by a finite amount of liquid 
with a limited concentration of dissolved gases [14]. 

In Fig. 5, results of calculation for the case of water- 
nitrogen system, in which surface tension is relatively 
high, are presented for reference purposes. The trend 
is similar to that of the previous organic solution 
systems except that its initial development is retarded, 
while subsequent growth occurs more or less abruptly. 

Fig. 7. The appearance of gas bubble durmg the late stages of decompression of benzene supersaturated 
with nitrogen with various initial pressures : (a) P, = 15 atm ; (b) 23 atm ; (c) 35 atm; (d) 40 atm [7]. Photos 

were taken at 0.8 s after the decompression. Each frame represents an area of 2.36 x 2.36 mm. 
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Figure 6 shows the effect of varying the nucleation 
rate Jn, on the instantaneous gas to liquid volume 
ratio. As discussed in the previous section, J,,,, rep- 
resents the number of critical clusters, hence gas bub- 
ble occurring per unit volume and per unit time, pro- 
vided that the critical clusters do not coalesce together. 
Therefore, by simply multiplying JnC to the known 
instantaneous bubble volume, one may readily obtain 
the total gas to liquid volume ratio at a given time. 
The utility of examining such variations is that, by 
comparing with experimental observations, one may 
gain some idea in determining the nucleation rate 
value. For reference purposes, a series of photographs 
taken by Hong [7], which show the appearance of gas 
bubble in benzene-nitrogen solution depending on 
the decompression amount, is shown in Fig. 7. As 
increasing the decompression value, the number of 
bubbles nucleated in unit volume, correspondingly 
the volume occupied by gas bubbles is shown to be 
increased. In fact, the nucleation rate is a parameter 
to predict not only the nucleation event, but also the 
nucleation process. This is realized in the case of evap- 
oration at the superheat limit [30, 311 and nucleation 
of silicon after laser melting [32]. The time required 
for the appearance of macroscopic size bubble, which 
was observed by Hong [7] and Kaddah and Robertson 
[l] is in the order of seconds. These observations are 
also in agreement with the calculation result shown in 
Fig. 6. More detailed bubble growth for various cases, 
especially for the case that bubble growth is controlled 
by reaction at bubble wall, may be considered by using 
the phenomenological exsolution (or dissolution) rate 
constant [ 131. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13 

14. 

15. 

16. 

17. 

CONCLUSION 18. 

The spontaneous gas bubble nucleation and sub- 
sequent bubble growth in various organic solutions 
initially saturated with dissolved gas have been con- 
sidered in this study. A process of macroscopic bubble 
formation from the critical cluster has been suggested. 
The calculated value of the decompression amount 
for the homogeneous bubble nucleation and the time 
required for the birth of macroscopic bubble in the 
solutions are in reasonable agreement with obser- 
vation, which validates the proposed model. 
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